3,493 research outputs found

    Cosmic-Ray Induced Diffuse Emissions from the Milky Way and Local Group Galaxies

    Full text link
    Cosmic rays fill up the entire volume of galaxies, providing an important source of heating and ionisation of the interstellar medium, and may play a significant role in the regulation of star formation and galactic evolution. Diffuse emissions from radio to high-energy gamma rays (> 100 MeV) arising from various interactions between cosmic rays and the interstellar medium, interstellar radiation field, and magnetic field, are currently the best way to trace the intensities and spectra of cosmic rays in the Milky Way and other galaxies. In this contribution, I describe our recent work to model the full spectral energy distribution of galaxies like the Milky Way from radio to gamma-ray energies. The application to other galaxies, in particular the Magellanic Clouds and M31 that are detected in high-energy gamma-rays by the Fermi-LAT, is also discussed.Comment: Contribution to "The Spectral Energy Distribution of Galaxies" Proceedings IAU Symposium No. 284, 2011, eds. R.J. Tuffs & C.C.Popescu. 4 pages with 4 figure

    Search for variable gamma-ray emission from the Galactic plane in the Fermi data

    Full text link
    High-energy gamma-ray emission from the Galactic plane above ~100 MeV is composed of three main contributions: diffuse emission from cosmic ray interactions in the interstellar medium, emission from extended sources, such as supernova remnants and pulsar wind nebulae, and emission from isolated compact source populations. The diffuse emission and emission from the extended sources provide the dominant contribution to the flux almost everywhere in the inner Galaxy, preventing the detection of isolated compact sources. In spite of this difficulty, compact sources in the Galactic plane can be singled out based on the variability properties of their gamma-ray emission. Our aim is to find sources in the Fermi data that show long-term variability. We performed a systematic study of the emission variability from the Galactic plane, by constructing the variability maps. We find that emission from several directions along the Galactic plane is significantly variable on a time scale of months. These directions include, in addition to known variable Galactic sources and background blazars, the Galactic ridge region at positive Galactic longitudes and several regions containing young pulsars. We argue that variability on the time scale of months may be common to pulsars, originating from the inner parts of pulsar wind nebulae, similarly to what is observed in the Crab pulsar.Comment: 4 pages, 4 figures, accepted to Astronomy & Astrophysic

    Gamma-ray emission from AGNs

    Full text link
    Blazars, radio-loud active galactic nuclei with the relativistic jet closely aligned with the line of sight, dominate the extragalactic sky observed at gamma-ray energies, above 100 MeV. We discuss some of the emission properties of these sources, focusing in particular on the "blazar sequence" and the interpretative models of the high-energy emission of BL Lac objects.Comment: 8 pages, 4 figures, to appear in the proceedings of the HEPRO II conference, Buenos Aires, October 26-30 200

    On leptonic models for blazars in the Fermi era

    Full text link
    Some questions raised by Fermi-LAT data about blazars are summarized, along with attempts at solutions within the context of leptonic models. These include both spectral and statistical questions, including the origin of the GeV breaks in low-synchrotron peaked blazars, the location of the gamma-ray emission sites, the correlations in the spectral energy distributions with luminosity, and the difficulty of synchrotron/SSC models to fit the spectra of some TeV blazars.Comment: 9 pages, 1 figure, in "Beamed and Unbeamed Gamma Rays from Galaxies," Muonio, Finland, 11-15 April, 2011, ed. R. Wagner, L. Maraschi, A. Sillanpaa, to appear in Journal of Physics: Conference Serie

    The bright unidentified gamma-ray source 1FGL J1227.9-4852: Can it be associated with an LMXB?

    Full text link
    We present an analysis of high energy (HE; 0.1-300 GeV) gamma-ray observations of 1FGL J1227.9-4852 with the Fermi Gamma-ray Space Telescope, follow-up radio observations with the Australia Telescope Compact Array, Giant Metrewave Radio Telescope and Parkes radio telescopes of the same field and follow-up optical observations with the ESO VLT. We also examine archival XMM-Newton and INTEGRAL X-ray observations of the region around this source. The gamma-ray spectrum of 1FGL J1227.9-4852 is best fit with an exponentially cutoff power-law, reminiscent of the population of pulsars observed by Fermi. A previously unknown, compact radio source within the 99.7% error circle of 1FGL J1227.9-4852 is discovered and has a morphology consistent either with an AGN core/jet structure or with two roughly symmetric lobes of a distant radio galaxy. A single bright X-ray source XSS J12270-4859, a low-mass X-ray binary, also lies within the 1FGL J1227.9-4852 error circle and we report the first detection of radio emission from this source. The potential association of 1FGL J1227.9-4852 with each of these counterparts is discussed. Based upon the available data we find the association of the gamma-ray source to the compact double radio source unlikely and suggest that XSS J12270-4859 is a more likely counterpart to the new HE source. We propose that XSS J12270-4859 may be a millisecond binary pulsar and draw comparisons with PSR J1023+0038.Comment: Accepted for publication in MNRAS; 9 pages, 8 figures, 2 table

    Conservative upper limits on WIMP annihilation cross section from Fermi-LAT Îł\gamma-rays

    Get PDF
    The spectrum of an isotropic extragalactic Îł\gamma-ray background (EGB) has been measured by the Fermi-LAT telescope at high latitudes. Two new models for the EGB are derived from the subtraction of unresolved point sources and extragalactic diffuse processes, which could explain from 30% to 70% of the Fermi-LAT EGB. Within the hypothesis that the two residual EGBs are entirely due to the annihilation of dark matter (DM) particles in the Galactic halo, we obtain conservativeconservative upper limits on their annihilation cross section \sigmav. Severe bounds on a possible Sommerfeld enhancement of the annihilation cross section are set as well. Finally, would {\sigmav} be inversely proportional to the WIMP velocity, very severe limits are derived for the velocity-independent part of the annihilation cross section.Comment: Proceedings of XII Taup Conference, Munich, September 201

    Gamma-Ray Emission from Two Blazars Behind the Galactic Plane: B2013+370 & B2023+336

    Get PDF
    B2013+370 and B2023+336 are two blazars at low-galactic latitude that were previously proposed to be the counterparts for the EGRET unidentified sources, 3EG J2016+3657 and 3EG J2027+3429. Gamma-ray emission associated with the EGRET sources has been detected by the Fermi Gamma-ray Space Telescope, and the two sources, 1FGL J2015.7+3708 and 1FGL J2027.6+3335, have been classified as unidentified in the 1-year catalog. This analysis of the Fermi-LAT data collected during 31 months reveals that the 1FGL sources are spatially compatible with the blazars, and are significantly variable, supporting the hypothesis of extragalactic origin for the gamma-ray emission. The gamma-ray light curves are compared with 15 GHz radio light curves from the 40-m telescope at the Owens Valley Radio Observatory (OVRO). Simultaneous variability is seen in both bands for the two blazar candidates. The study is completed with the X-ray analysis of 1FGL J2015.7+3708 using Swift observations that were triggered in August 2010 by a Fermi-detected flare. The resulting spectral energy distribution shows a two-component structure typical of blazars. We also identify a second source in the field of view of 1FGL J2027.6+3335 with similar characteristics to the known LAT pulsars. This study gives solid evidence favoring blazar counterparts for these two unidentified EGRET and Fermi sources, supporting the hypothesis that a number of unidentified gamma-ray sources at low galactic latitudes are indeed of extragalactic origin.Comment: 10 pages, 7 figures, 6 tables, accepted for publication in The Astrophysical Journa

    Extragalactic Very-High-Energy gamma-ray background

    Full text link
    We study the origin of the extragalactic diffuse gamma-ray background using the data from the Fermi telescope. To estimate the background level, we count photons at high Galactic latitudes |b|>60 degrees. Subtracting photons associated to known sources and the residual cosmic ray and Galactic diffuse backgrounds, we estimate the Extragalactic Gamma-ray Background (EGB) flux. We find that the spectrum of EGB in the very-high-energy (VHE) band above 30 GeV follows the stacked spectrum of BL Lacs. LAT data reveal the positive (1+z)^k, 1<k<4 cosmological evolution of the BL Lac source population consistent with that of their parent population, FR I radio galaxies. We show that EGB at E>30 GeV could be completely explained by emission from unresolved BL Lacs if k~3.Comment: 8 pages, 6 figures, accepted to Astrophysics Journa

    Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    Full text link
    We present an analysis of the gamma-ray measurements by the Large Area Telescope(LAT) onboard the \textit{Fermi Gamma-ray Space Telescope} in the region of the supernova remnant(SNR) Cygnus Loop(G74.0−-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2--100 GeV. The gamma-ray spectrum shows a break in the range 2--3 GeV. The gamma-ray luminosity is ∌\sim 1×10331 \times 10^{33}erg s−1^{-1} between 1--100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0∘^\circ.7 ±\pm 0∘^\circ.1 and 1∘^\circ.6 ±\pm 0∘^\circ.1. Given the association among X-ray rims, \halpha filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.Comment: accepted by ApJ, 34 pages, 6 figure
    • 

    corecore